Laser Flash Photoiysis Studies of the Kinetics of Reduction of Ferredoxins and Ferredoxin-NADP+ Reductases from Anabaena PCC 7119 and Spinach: Electrostatic Effects on lntracomplex Electron Transfer’

نویسندگان

  • Mark C. Walker
  • Jose J. Pueyo
  • Jose A. Navarro
  • Gordon Tollin
چکیده

The influence of electrostatic forces on the formation of, and electron transfer within, transient complexes between redox proteins was examined by comparing ionic strength effects on the kinetics of the electron transfer reaction between reduced ferredoxins (Fd) and oxidized ferredoxinNADP+ reductases (FNR) from Analmena and from spinach, using laser flash photolysis techniques. With the Anabaena proteins, direct reduction by laser-generated flavin semiquinone of the FNR component was inhibited by complex formation at low ionic strength, whereas Fd reduction was not. The opposite results were obtained with the spinach system. These observations clearly indicate structural differences between the cyanobacterial and higher plant complexes. For the complex formed by the Anabaena proteins, the results indicate that electrostatic forces are not a major contributor to complex stability. However, the rate constant for intracomplex electron transfer had a biphasic dependence on ionic strength, suggesting that structural rearrangements within the transient complex facilitate electron transfer. In contrast to the Anabaena complex, electrostatic forces are important for the stabilization of the spinach Fd:FNR complex, and changes in ionic strength had little effect on the limiting rate constant for intracomplex electron transfer. This suggests that in this case the geometry of the initial collisional complex is optimal for reaction. These results provide a clear illustration of the differing roles that electrostatic interactions may play in controlling electron transfer between two redox proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119.

The crystal structure of Anabaena PCC 7119 ferredoxin-NADP+ reductase (FNR) suggests that the carboxylate group of Glu301 may be directly involved in the catalytic process of electron and proton transfer between the isoalloxazine moiety of FAD and FNR substrates (NADPH, ferredoxin, and flavodoxin). To assess this possibility, the carboxylate of Glu301 was removed by mutating the residue to an a...

متن کامل

Archives of Biochemistry and Biophysics

The kinetics of reduction and intracomplex electron transfer in electrostatically stabilized and covalently crosslinked complexes between ferredoxin-NADP+ reductase (FNR) and flavodoxin (Fld) from the cyanobacterium Anabuena PCC 7119 were compared using laser flash photolysis. The second-order rate constant for reduction by 5-deazariboflavin semiquinone (dRfII) of FNR within the electrostatical...

متن کامل

Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of Trp(57) and Tyr(94).

The influence of the amino acid residues sandwiching the flavin ring in flavodoxin (Fld) from the cyanobacterium Anabaena sp. PCC 7119 in complex formation and electron transfer (ET) with its natural partners, photosystem I (PSI) and ferredoxin-NADP(+) reductase (FNR), was examined in mutants of the key residues Trp(57) and Tyr(94). The mutants' ability to form complexes with either FNR or PSI ...

متن کامل

Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes.

The existence of three first-order phases has been previously reported for the reduction of soluble ferredoxin by photosystem I (PSI), both from the cyanobacterium Synechocystis sp. PCC 6803 (at pH 8 and in the presence of salts) [Sétif, P. Q. Y., & Bottin, H. (1994) Biochemistry 33, 8495-8504]. The spectra of these three phases (t1/2 < 1 microsecond, = 13-20 and 103-123 microseconds) have been...

متن کامل

Reactivity of reduced [2Fe-2S] ferredoxins parallels host susceptibility to nitroimidazoles.

The kinetics of the electron transfer reaction between reduced [2Fe-2S] ferredoxins and select nitroimidazole antimicrobial agents is reported. The ferredoxins from the protozoan Trichomonas vaginalis and the cyanobacterium Anabaena sp. strain 7120 were studied because they are the proximal electron donors to nitroimidazoles in these two organisms with significantly different nitroimidazole sus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003